You have $$\underline{r}=\left(\begin {matrix}a\cosh\omega t\\\b\sinh\omega t\end{matrix}\right)\Rightarrow\underline{\dot{r}}=\left(\begin {matrix}a\omega\sinh\omega t\\\b\omega\cosh\omega t\end{matrix}\right)$$ $$\Rightarrow\underline{\ddot{r}}=\left(\begin {matrix}a\omega^2\cosh\omega t\\\b\omega^2\sinh\omega t\end{matrix}\right)=\omega^2\underline{r}$$
Thus the acceleration acts in a direction along the radius vector and away from the origin, i.e. is centrifugal.