Guide:
Let the energy be $$E= 1 + \frac14 X^2$$
Let $y \in (1,2)$,
Compute $Pr(E \le y)=Pr(1+\frac14X^2 \le y)$
Convert that expression to function of CDF of $X$ to evaluate it.
Edit:
\begin{align} Pr(E \le y) &= Pr(1+\frac14 X^2 \le y)\\\ &=Pr(X^2 \le 4(y-1)) \\\ &= Pr (-2\sqrt{y-1} \le X \le 2 \sqrt{y-1}) \\\ &= Pr(X \le 2 \sqrt{y-1})-Pr(X <-2\sqrt{y-1}) \\\ &= \begin{cases} Pr(X \le 2 \sqrt{y-1})-Pr(X <-2\sqrt{y-1}) & , y \in (1, \frac54) \\\ Pr(X \le 2 \sqrt{y-1}) - 0 &, y \in [ \frac54, 2)\end{cases} \\\ &= \begin{cases} \frac{2 \sqrt{y-1}+1}3-\frac{-2\sqrt{y-1}}3 & , y \in (1, \frac54) \\\ \frac{2 \sqrt{y-1}+1}3 &, y \in [ \frac54, 2)\end{cases} \\\ &= \begin{cases} \frac{2 \sqrt{y-1}+1}3-\frac{-2\sqrt{y-1}+1}3 & , y \in (1, \frac54) \\\ \frac{2 \sqrt{y-1}+1}3 &, y \in [ \frac54, 2)\end{cases} \\\ &= \begin{cases} \frac{4 \sqrt{y-1}}3 & , y \in (1, \frac54) \\\ \frac{2 \sqrt{y-1}+1}3 &, y \in [ \frac54, 2)\end{cases} \\\ \end{align}