The arc sine of small angles ($|x|<1$) can be computed using the Taylor development around $0$:
$$\arcsin(x)=x+\frac{1\cdot3}{2\cdot4}\frac{x^3}3+\frac{1\cdot3\cdot5}{2\cdot4\cdot6}\frac{x^5}5+\cdots.$$
$$\arcsin\frac1{250}\approx0.004+0.000000008+0.000000000000064+\cdots$$
For very small arguments or low accuracy requirements, the first term can be enough.