Let $X$ denote the highest floor that the elevator reaches, then:
* $P(X=1)=\left(\frac{1}{10}\right)^{12}$
* $P(X=n)=\left(\frac{n}{10}\right)^{12}-P(X=n-1)$
Hence:
$E(X)=$
$\sum\limits_{n=1}^{10}n\cdot P(X=n)=$
$\sum\limits_{n=1}^{10}n\cdot\left(\left(\frac{n}{10}\right)^{12}-\left(\frac{n-1}{10}\right)^{12}\right)=$
$\sum\limits_{n=1}^{10}n\cdot\left(\frac{n^{12}-(n-1)^{12}}{10^{12}}\right)=$
$9.632571463867$