Setting $b_n=\frac{a_n}{2^n}$ gives you
$$\frac{a_n}{2^n}=\frac{8a_{n-1}-20a_{n-2}+16a_{n-3}+2^n}{2^n}$$ $$\iff\frac{a_n}{2^n}=\frac{2\cdot 4a_{n-1}}{2^n}-\frac{2^2\cdot 5a_{n-2}}{2^n}+\frac{2^3\cdot 2a_{n-3}}{2^n}+\frac{2^n}{2^n}$$ $$\iff \frac{a_n}{2^n}=4\frac{a_{n-1}}{2^{n-1}}-5\frac{a_{n-2}}{2^{n-2}}+2\frac{a_{n-3}}{2^{n-3}}+1$$ $$\iff b_n=4b_{n-1}-5b_{n-2}+2b_{n-3}+1$$