Since $A$ is orthogonal, $A^{-1}= A^T$
given $|| x||_1≤\sqrt n$
$Cond(A)= ||A||_1 * ||A^{-1}||_1 = ||A||_1 *||A^T||_1 ≤ \sqrt n * \sqrt n = n$
Since $A$ is orthogonal, $A^{-1}= A^T$
given $|| x||_1≤\sqrt n$
$Cond(A)= ||A||_1 * ||A^{-1}||_1 = ||A||_1 *||A^T||_1 ≤ \sqrt n * \sqrt n = n$