Let $x-y=u$ and $x+y+z=t$. Then you can find $x$, $y$ and $z$ in terms of $u$ and $t$ by Crammer's Rule.
$$(x,y,z)=\left(\frac{2u-t+4}{3},\frac{-u-t+4}{3},\frac{-u+5t-8}{3}\right),$$
where $2\le u\le 4$ and $0\le v\le7$.
Let $x-y=u$ and $x+y+z=t$. Then you can find $x$, $y$ and $z$ in terms of $u$ and $t$ by Crammer's Rule.
$$(x,y,z)=\left(\frac{2u-t+4}{3},\frac{-u-t+4}{3},\frac{-u+5t-8}{3}\right),$$
where $2\le u\le 4$ and $0\le v\le7$.