Exactly right. You subsititute $y=1$ into the compound $\cosh$ identity and everything should go easily from there.
For part (c),
Rearrange $\sinh(x + 1) − \sinh(x) = \left(−1 + \cosh(1)\right) \sinh(x) + \sinh(1) \cosh(x)$
to get: $\sinh(x + 1) = \sinh(x) + \left(−1 + \cosh(1)\right) \sinh(x) + \sinh(1) \cosh(x)$
$\sinh(0)=0$ and $\cosh(0)=1$
$\sinh(0 + 1) = \sinh(0) + \left(−1 + \cosh(1)\right) \sinh(0) + \sinh(1) \cosh(0)$
$\sinh(1) = 0 + \left(−1 + \cosh(1)\right) (0) + \sinh(1) (1)$
$\sinh(1) = \sinh(1)$ as you would expect!
$\sinh(1 + 1) = \sinh(1) + \left(−1 + \cosh(1)\right) \sinh(1) + \sinh(1) \cosh(1)$
$\sinh(2) = 2\cosh(1)\sinh(1)$