By Hasse's bound we know that $1\le |E(\mathbb{F}_3)|\le 7$; and indeed there is an elliptic curve with $E(\mathbb{F}_{3})=\\{\mathcal{O}\\}$, given by $$ y^2=x^3-x-1. $$ Actually, since we know that all such curves are given by the long Weierstrass equation $y^2=x^3+ax^2+bx+c$ with nonzero discriminant, we can just try all possibilities for $a,b,c$. There are not many curves to test. Taking all possibilities we obtain that $E(\mathbb{F}_{3})$ can be one of the following possibilities: $1, C_2, C_3,C_4, C_5,C_6,C_7, C_2\times C_2$.