We know that $\cos(x-t)=\frac{e^{i(x-t)}+e^{-i(x-t)}}{2}$. So $$\begin{align} Ke_k(x) &= \int_{-\pi}^\pi \frac{e^{i(x-t)}+e^{-i(x-t)}}{2} e^{ikt}dt \\\ &= \frac{e^{ix}}{2}\int_{-\pi}^\pi e^{i(k-1)t}dt + \frac{e^{-ix}}{2}\int_{-\pi}^\pi e^{i(k+1)t}dt \end{align}$$
Now you can use that $\int_{-\pi}^{\pi} e^{ilt} dt = 0$ if $l\in \mathbb{Z}^*$ and $2\pi$ if $l=0$.