Instead of obtaining a contradiction try using $1 - g \in \mathrm{rad}A$ to prove that $g + \mathrm{rad}A = 1 + \mathrm{rad}A$.
Instead of obtaining a contradiction try using $1 - g \in \mathrm{rad}A$ to prove that $g + \mathrm{rad}A = 1 + \mathrm{rad}A$.