Last step (you were so close!): the determinant is multiplicative, so
$$\det\left(C^{-1}(A-\lambda I)C\right)=\color{red}{\left(\det C\right)^{-1}}\cdot\det(A-\lambda I)\cdot \color{red}{\det C}=\det(A-\lambda I)$$
Last step (you were so close!): the determinant is multiplicative, so
$$\det\left(C^{-1}(A-\lambda I)C\right)=\color{red}{\left(\det C\right)^{-1}}\cdot\det(A-\lambda I)\cdot \color{red}{\det C}=\det(A-\lambda I)$$