Artificial intelligent assistant

Inverse Functions of simple quadratics - simply disguised problem Find the equation of the inverse of y = (x + 2)^2 - 4 Edit: Simply switching around the x and y doesn't work because then you are stuck with solving for y x = y^2 + 4y There should be a simpler method Edit: The domain is restricted to x is greater than or equal to -2

Strictly speaking, this function does not have an inverse, since it's not injective (i.e. it's not "one to one", which is to say that two domain elements can map to the same element in the range). However, if we restrict the domain to $x\geq -2$, we can invert the function. To do this, just swap $x$ and $y$ and solve for $y$: $$0 = y^2+4y-x$$ using the quadratic formula, $$y = \frac{-4 +\sqrt{16+4x}}{2} = -2+\sqrt{4+x}$$

xcX3v84RxoQ-4GxG32940ukFUIEgYdPy 1639539d28aa7d6b9d5abdb42066e783