Let $a=\frac{x}{\sqrt3},$ $b=\frac{y}{\sqrt3},$ $c=\frac{z}{\sqrt3}$ and $d=\frac{t}{\sqrt3}$.
Thus, by C-S we obtain: $$\frac{\sqrt{(a^2+1)(b^2+1)(c^2+1)(d^2+1)}}{a+b+c+d}=\frac{\sqrt{(x^2+3)(y^2+3)(z^2+3)(t^2+3)}}{9(a+b+c+d)}\geq$$ $$\geq\frac{\sqrt{2((x+y)^2+4)\cdot2(4+(z+t)^2)}}{9(a+b+c+d)}\geq\frac{2(2(x+y)+2(y+t))}{9(a+b+c+d)}=\frac{4}{3\sqrt3}.$$ The equality occurs for $a=b=c=d=\frac{1}{\sqrt3},$ which says that we got a minimal value.
I used the following inequality: $$(x^2+3)(y^2+3)\geq2((x+y)^2+4),$$ which is $$(xy-1)^2+(x-y)^2\geq0.$$