$$T(x,y,z)\leq8x^2+2(y^2+z^2)-16z+1600=$$ $$=8x^2+2y^2+8z^2-6z^2-16z+1600=$$ $$=-6z^2-16z+1632=-\frac{2}{3}(3z+4)^2+\frac{4928}{3}\leq\frac{4928}{3}.$$ The equality occurs for $(x,y,z)=\left(\pm\frac{4}{3},-\frac{4}{3},-\frac{4}{3}\right)$ only, which says that we got a maximal value and two needed points.