Note that $\Lambda$ can be written as $$\Lambda=diag\\{\lambda_1,\cdots,\lambda_n\\}$$ and therefore $$\Lambda^j=diag\\{\lambda_1^j,\cdots,\lambda_n^j\\}$$ or equivalently $$\Lambda^j=\sum_{i=1}^n{\lambda_i^j e_ie_i^T}$$ where $e_i$ is the $i$-th column of the identity matrix. Then
> $$\sum_{j=1}^{\infty}{A^jB\Lambda^j}=\sum_{j=1}^{\infty}{A^jB\sum_{i=1}^n{\lambda_i^j e_ie_i^T}}=\sum_{i=1}^n{\left(\sum_{j=1}^{\infty}{\lambda_i^jA^j}\right)Be_ie_i^T}=\sum_{i=1}^n{\left(I-\lambda_iA\right)^{-1}Be_ie_i^T}$$
as long as $\|\lambda_iA\|< 1$ for all $i=1,\cdots,n$.