If $V=$ Span$\\{u,w_1,\ldots,w_n\\}=$ Span$\\{w_1,\ldots,w_n\\}$ then for any $v\in V$ there exists $s,c_i,d_i$ such that \begin{align} v &=su+c_1w_1+\cdots+c_nw_n\\\ &=d_1w_1+\ldots+d_nw_n. \end{align} We can accept without loss of generality $s\
eq 0$ so $u=\sum_{i=1}^n \frac{1}{s}(d_i-c_i)w_i$. Other implication is obvious so we are done.
**EDIT** $\frac{1}{s}$ added to the expression of $u$. Since Span$\\{u,w_1,\ldots,w_n\\}=$ Span$\\{w_1,\ldots,w_n\\}$, the set $\\{u,w_1,\ldots,w_n\\}$ is linearly dependent so the expansion of $v$ is not unique in terms of $\\{u,w_1,\ldots,w_n\\}$. When $s=0$, the $c_i$'s must be $d_i$ and when $s\
eq 0$ there are different $c_i$ and $d_i$.
Actually I noticed shortest proof of the proposition while typing the edit. If $V=$ Span$\\{u,w_1,\ldots,w_n\\}=$ Span$\\{w_1,\ldots,w_n\\}$ then $u\in V=$ Span$\\{w_1,\ldots,w_n\\}$. Thus $u$ is a linear combination of $w_1,\ldots,w_n$