We have the ratios of $8x : 3x: 1x$, where $x$ is in millions. That gives us a total of
$8x + 3x + 1\cdot x = 12x$ which is twelve _partitions_ of $48$ million: 12 groups of $x$-million.
So we can solve for $x$: $$12 x = 48 \;\text{million} \iff x = \dfrac{48\;\text{million}}{12} = 4 \;\text{million}$$
So that gives us a ratio of provisions with $$(8\cdot 4\;\text{million}) : (3\cdot 4\;\text{million}): (1 \cdot 4\;\text{million})$$
So the largest provision is $\;8\cdot 4 = 32 \;\text{million}$, and the smallest provision is $4$ million.