Given the standard limit as $t \to 0$ $\frac{e^t-1}t \to 1$ we have that
$$\dfrac{e^{3x}-e^x}{x}=2e^x \frac{e^{2x}-1}{2x}\to2\cdot1\cdot1$$
To prove the standard limit recall that
$$e=\lim_{y\to \infty}\left(1+\frac1y\right)^y \implies 1=\log e=\lim_{y\to \infty}y\log \left(1+\frac1y\right) \implies \lim_{x\to 0} \frac{\log(1+x)}{x} \to 1 $$
therefore by $y=e^t-1 \to 0 \implies t=\log (1+y)$ we have
$$\frac{e^t-1}t=\frac{y}{\log (1+y)}\to 1$$