To allay confusion, I would word this _much_ more carefully, with care taken to match the general wording of open subsets.
When a topological space $X$ is given (with its topology specified somehow), one can ask whether a subset $A \subset X$ is open in $X$.
So, for example, when the topological space $\mathbb R$ is given (with its standard topology), its subset $[a,b] \subset \mathbb R$ is not open in $\mathbb R$.
But when the topological space $[a,b]$ is given (with the subspace topology that it inherits from $\mathbb R$), its subset $[a,b] \subset [a,b]$ _is_ open in $[a,b]$.