Artificial intelligent assistant

I'm having problems solving this indefinite integral $$\int \frac{1}{x+1} \left(\frac{x+1}{x}\right)^{2/3}dx$$ I have tried a $u$-substitution on the whole cube root thingy with $t$ but it did not work. I get $-3\int\frac{tdt}{(t^3-1)^2}$ and I don't know how to solve that. Please help.

Letting $t=\frac{x+1}{x}\iff \frac 1x=t-1$, then we get $$\frac{dt}{dx}=\frac{x-(x+1)}{x^2}=-\frac{1}{x^2}=-(t-1)^2.$$ Hence, we have $$\int\frac{1}{x+1}\left(\frac{x+1}{x}\right)^{2/3}dx=\int\frac{1}{\frac{1}{t-1}+1}\cdot t^{2/3}\cdot \frac{-1}{(t-1)^2}dt=\int\frac{-t^{2/3}}{(t-1)+(t-1)^2}dt$$ $$=\int\frac{-t^{2/3}}{(t-1)t}dt=\int\frac{-t^{-(1/3)}}{t-1}dt.$$

Then, this gives you the answer.

So, the answer is $$\frac 12\ln (x^{2/3}+x^{1/3}+1)-\ln (1-x^{1/3})-\sqrt 3\tan^{-1}\left(\frac{2x^{1/3}+1}{\sqrt 3}\right)+C.$$

xcX3v84RxoQ-4GxG32940ukFUIEgYdPy 1399f676f978751e37094752c329e526