Try to fit your sum into one of the following: $$ \sum_{k=0}^n\binom{n}ka^kb^{n-k}=(a+b)^n,\quad\sum_{k=0}^n\binom{n}kb^{n-k}=(1+b)^n,\quad\sum_{k=0}^n\binom{n}ka^k=(a+1)^n. $$
Try to fit your sum into one of the following: $$ \sum_{k=0}^n\binom{n}ka^kb^{n-k}=(a+b)^n,\quad\sum_{k=0}^n\binom{n}kb^{n-k}=(1+b)^n,\quad\sum_{k=0}^n\binom{n}ka^k=(a+1)^n. $$