We need to prove that $$ab+ac+bc\geq\frac{9}{\frac{1}{ab}+\frac{1}{ac}+\frac{1}{bc}}$$ or $$(ab+ac+bc)(a+b+c)\geq9abc$$ which is just AM-GM: $$(ab+ac+bc)(a+b+c)\geq3\sqrt[3]{a^2b^2c^2}\cdot3\sqrt[3]{abc}=9abc$$
Or by C-S: $$(ab+ac+bc)\left(\frac{1}{ab}+\frac{1}{ac}+\frac{1}{bc}\right)\geq(1+1+1)^2=9$$