A supremum is an upper bound so $\operatorname{pd}A_i \leq \sup\\{\operatorname{pd}A_i \ | \ i\\}$. Letting $n = \sup\\{\operatorname{pd}A_i \ | \ i\\}$ then gives $\operatorname{pd}A \leq \sup\\{\operatorname{pd}A_i \ | \ i\\}$. Conversely $\operatorname{pd}A \leq \operatorname{pd}A$ so letting $n = \operatorname{pd}A$ gives $\operatorname{pd}A_i \leq \operatorname{pd}A$ for all $i$. As supremum is a _least_ upper bound $\sup\\{\operatorname{pd}A_i \ | \ i\\} \leq \operatorname{pd}A$.