Boolean rings are commutative (see below for a proof) so that $ara=a^2r=ar$. So $aRa$ will only contain the identity if $a$ is a unit.
Also $a(1-a)=a-a^2=a-a=0$ showing that $a\
eq1$ implies that $a$ is not a unit.
Final conclusion $aRa$ is a subring of $R$ if and only if $a=1$.
* * *
proof of commutativity:
$a+b=(a+b)^2=a^2+ab+ba+b^2=a+ab+ba+b$ so that $ab+ba=0=ab+ab$. So $ba=ab$.