$$-D\frac{\mathrm{d^{2}}\varphi (x) }{\mathrm{d} x^{2}}+K^{2}D\varphi (x)=Q\delta (x)$$ Apply Fourier Transform: $$\mathcal {F}\\{ f'(x)\\}=iw \mathcal{F}\\{f\\}(w) \text { , and } \mathcal {F}\\{\delta(x)\\}=1$$ $$-(iw)^2\varphi (w) +K^{2}\hat {\varphi } (w)=\frac Q D$$ $$(w^2 +K^{2})\hat {\varphi }(w)=\frac Q D$$ $$\hat {\varphi } (w)=\frac Q {D(w^2 +K^{2})}$$ $$\hat {\varphi } (w)=\frac Q {2KD} \frac {2K} {(w^2 +K^{2})}$$ Now apply Inverse Fourier Transform: $$\mathcal{F^{-1}} \left \\{\frac {2K} {(w^2 +K^{2})}\right \\}=e^{-K|x|} \text { , with } K>0$$ $$\varphi (x)=\frac Q {2KD} e^{-K |x|} $$