First write explicitly the integral domain:
$$0\le x,r\le 1, 0\le \alpha\le r, 0\le \beta\le x.$$ For fixed $\alpha\in[0,1]$, we have $0\le\beta\le 1$. Then we have $\beta\le x\le 1$, and $\alpha\le r\le 1$. Hence, $$\int_0^1\int_0^1\int_0^r\int_0^xf(x,r,\alpha,\beta)\mbox{d}\beta \mbox{d}\alpha \mbox{d}r\mbox{d}x=\int_0^1\int_0^1\int_\beta^1\int_\alpha^1f(x,r,\alpha,\beta)\mbox{d}r\mbox{d}x \mbox{d}\beta \mbox{d}\alpha.$$