You just need to differentiate the volume $V(t)$ wrt. $t$ and compare with the formula for the surface:
* $V(t)=\frac{4}{3}\pi r^3(t) \Rightarrow \frac{dV}{dt}= 4\pi r^2(t)\cdot \dot r(t)$
* $S(t) = 4\pi r^2(t) \stackrel{\frac{dV}{dt}=kS(t)}{\Longrightarrow}$ $$k\cdot 4\pi r^2(t) = 4\pi r^2(t)\cdot \dot r(t)\Leftrightarrow \boxed{\dot r(t) =k}$$