Let $\displaystyle\arcsin x=\phi\implies\sin\phi=x$ and $-\frac\pi2\le \phi\le\frac\pi2$ based the principal value of inverse sine ratio
So, $\displaystyle\cos(\arcsin x)=\cos\phi=+\sqrt{1-\sin^2\phi}=+\sqrt{1-x^2}$
Let $\displaystyle\arcsin x=\phi\implies\sin\phi=x$ and $-\frac\pi2\le \phi\le\frac\pi2$ based the principal value of inverse sine ratio
So, $\displaystyle\cos(\arcsin x)=\cos\phi=+\sqrt{1-\sin^2\phi}=+\sqrt{1-x^2}$