You need a table of correspondences for distributions. I use angular frequency $\omega$ and the non-unitary version of the Fourier transform:
$$\sin\omega_0t\Longleftrightarrow -i\pi[\delta(\omega-\omega_0)-\delta(\omega+\omega_0)]\\\ \Theta(t)\Longleftrightarrow\frac{1}{i\omega}+\pi\delta(\omega)$$
With these correspondences you get
$$\Theta(t)\sin\omega_0t\Longleftrightarrow\frac{1}{2\pi}\mathcal{F}(\Theta(t))* \mathcal{F}(\sin\omega_0t)$$
where $*$ stands for convolution. The result of the convolution is
$$\Theta(t)\sin\omega_0t\Longleftrightarrow -\frac12\left[\frac{1}{\omega-\omega_0}-\frac{1}{\omega+\omega_0}\right]-\frac{i\pi}{2}\left[\delta(\omega-\omega_0)-\delta(\omega+\omega_0)\right]$$
Note that WolframAlpha uses the unitary version of the Fourier transform which gives you different constants.