As $E(x)$ is a constant, $E(0)=E(\pi/4)$.
\begin{align*} 1+\sqrt{m}&=\sqrt{\frac{1}{4}+\frac{m}{2}}+\sqrt{\frac{1}{4}+\frac{m}{2}}\\\ 1+2\sqrt{m}+m&=1+2m\\\ 2\sqrt{m}&=m\\\ m&=0 \quad\textrm{or}\quad 4 \end{align*}
When $m=0$, $E(x)=1$ for all $x$.
When $m=4$,
\begin{align*} E(x)&=\sqrt{\cos^{4}x+4\sin^{2}x}+\sqrt{\sin^{4}x+4\cos^{2}x}\\\ &=\sqrt{(1-\sin^2x)^2+4\sin^2x}+\sqrt{(1-\cos^2x)^2+4\cos^2x}\\\ &=(1+\sin^2x)+(1+\cos^2x)\\\ &=3 \end{align*}