Let $f(z)=\frac{1}{z}$. Then consider functions $h=f \circ g$. Then $|h(z)|<|z|^{\frac{7}{3}}$ Then, $h(z)$ is similar to a quadratic polynomial. This in turn characterises $g(z)$.
Let $f(z)=\frac{1}{z}$. Then consider functions $h=f \circ g$. Then $|h(z)|<|z|^{\frac{7}{3}}$ Then, $h(z)$ is similar to a quadratic polynomial. This in turn characterises $g(z)$.