Artificial intelligent assistant

How to find the minute points of an ellipse clock, knowing the minor axis and the major axis? I want to make an analogic clock, not circle, but ellipse. So the distance between minute points is not constant. I guess it grows proportionally with the division of major axis with minor axis. How can i find these points on the ellipse ?

To get the points, parametrized by time, first note that $$ \frac{x^2}{a^2}+\frac{y^2}{b^2}=1 $$ and $$ \frac{x}{y}=\tan\left(t\frac\pi{6\text{ hrs}}\right) $$ which solved simultaneously yield the parametric curve $$ (x,y)=\frac{ab\left(\sin\left(t\frac\pi{6\text{ hrs}}\right),\cos\left(t\frac\pi{6\text{ hrs}}\right)\right)}{\sqrt{b^2\sin^2\left(t\frac\pi{6\text{ hrs}}\right)+a^2\cos^2\left(t\frac\pi{6\text{ hrs}}\right)}} $$ **Example:**
$\hspace{3.3cm}$!enter image description here

xcX3v84RxoQ-4GxG32940ukFUIEgYdPy 0c4fdad48c9b5bf13b1be1b62e7d5c0d