For $R \ge 0$
$$P(R \le r)=P(\sqrt{Y} \le r)=P(Y \le r^2) = 1 - \exp(-\lambda r^2)$$
See Rayleigh distribution.
* * *
In general,
$$1 - \exp(-\lambda y) = P(Y \le y) = P(R^2 \le y)=P(-\sqrt{y} \le R \le \sqrt{y}) = F_R(\sqrt{y}) - F_R(-\sqrt{y})$$
If R has a pdf, then
$$\int_{-\infty}^{\sqrt{y}} f_R(s) ds - \int_{-\infty}^{\sqrt{-y}} f_R(s) ds$$