Note $\rm\ x = 0\ $ in $\rm\ x \wedge (x \vee y)\ =\ x\ \ \Rightarrow\ \ 0\wedge (0\vee y)\ =\ 0\ \ $ contra $\rm\ \ 0\wedge x\ =\ 1\ \ $ (presuming $\rm\ 0 \
e 1\:$).
Alternatively, recall that the idempotent laws follows from the absorption laws, viz.
$$\rm x\wedge x\ =\ x\wedge (x\vee (x\wedge x))\ =\ x $$
Hence $\rm\ \ 0\wedge 0\ =\ 0\ \ $ contra $\rm\ \ 0\wedge x\ =\ 1\:.$