Symbols slightly altered.. $( \rho, R, \theta, \epsilon ) = ( - , D/2, \alpha, E)$ correspond.
Eccentric radius $\rho$, Circle radius $R$, Eccentric polar angle $\theta $
$$ \epsilon^2 + \rho^2 - 2 \epsilon \rho \cos \theta = R^2 \tag{1}$$
Solve quadratic and taking positive sign to evaluate to right of eccentricity,
$$ \rho = \epsilon \cos \theta + \sqrt{R^2 - ( \epsilon \sin \theta)^2 ) } \tag{2} $$
Its square is needed in area polar formula
$$ \rho^2 = \epsilon ^2 \cos ( 2 \theta) + R^2 +( 2 \epsilon \cos \theta) \sqrt{R^2 - ( \epsilon \sin \theta)^2 } \tag {3} $$
$$ 2\, dArea = \rho^2 d \theta \, \tag{4}$$
Integrate within limits w.r.t. $\theta $ independent variable.
$$ 2 Area = \int_{\theta_1} ^{\theta_2} \rho^2 d \theta \, \tag{5} $$
Hope I made no error and hope you will take it to finish the integral evaluation.
A closed form solution got by Mathematica...