**HINT:**
$$\frac{1}{z(z^2+8)}=\frac{1/8}{z}-\frac{z/8}{z^2+8}=\frac{1/8}{z}-\frac{1/16}{z+i2\sqrt 2}-\frac{1/16}{z-i2\sqrt 2}$$
Note that the only pole enclosed by the square contour is the one at $z=0$.
**HINT:**
$$\frac{1}{z(z^2+8)}=\frac{1/8}{z}-\frac{z/8}{z^2+8}=\frac{1/8}{z}-\frac{1/16}{z+i2\sqrt 2}-\frac{1/16}{z-i2\sqrt 2}$$
Note that the only pole enclosed by the square contour is the one at $z=0$.