If you complete the square, you will know all. We have $$ax^2 + bx + c = a\left(x^2 + {b\over a} x \right) + c = a\left(x + {b\over 2a}\right)^2 + c - {b^2\over 4a}. $$ If $f(x) = ax^2 + bx + c$, we have $$f(x) = a\left(x + {b\over 2a}\right)^2 + {4ac - b^2\over 4a}.$$ if $a > 0$ then $f(x)\ge {4ac-b^2\over 4a}.$ This precludes $f$ from being onto. If $a < 0$ a similar phenomenon inheres. So, $f$ is never onto.
Choose any two points equidistant from $-{b\over 2a}$. Then $f$ takes them to the same value. Therefore $f$ is never 1-1.