$$\sin(x)\prod_{i=0}^n\cos(2^ix)=\sin(x)\cos(x)\cos(2x)\cos(4x)...\cos(2^nx)= \\\ =\frac{\sin(2x)}{2}\cos(2x)\cos(4x)...\cos(2^nx)= \\\ =\frac{\sin(4x)}{4}\cos(4x)...\cos(2^nx)=...= \\\ = \frac{\sin(2^{n+1}x)}{2^{n+1}}$$
$$\sin(x)\prod_{i=0}^n\cos(2^ix)=\sin(x)\cos(x)\cos(2x)\cos(4x)...\cos(2^nx)= \\\ =\frac{\sin(2x)}{2}\cos(2x)\cos(4x)...\cos(2^nx)= \\\ =\frac{\sin(4x)}{4}\cos(4x)...\cos(2^nx)=...= \\\ = \frac{\sin(2^{n+1}x)}{2^{n+1}}$$