Here is one approach.
* Half-life $T = 4.51 \times 10^9$ years
* Ratio $\dfrac{\mbox{U-238}}{\mbox{Lead}} = 0.9 = \dfrac{9}{10}$
* This means $\dfrac{\mbox{U-238 atoms}}{\mbox{Original U-238 atoms}}= \dfrac{\dfrac{9}{10}}{0.9 + 1} = \dfrac{9}{19} = \dfrac{N}{N_0}$
* $\dfrac{N}{N_0} = \left(\dfrac{1}{2}\right)^{\dfrac{t}{T}}$
* $t = \dfrac{T \ln \left(\dfrac{N}{N_0}\right)}{\ln\left(\dfrac{1}{2}\right)}$
* $t = \dfrac{4.51 \times 10^9 ~\ln\left(\dfrac{9}{19}\right)}{\ln\left(\dfrac{1}{2}\right)} $
* $t = 4.86179 \times 10^9$ years