$$ \tan(x)=\tan(9)\tan(69)\tan(33) $$ $$ \tan(x) = \frac{\tan(39)\tan(3)}{\tan(9)} $$ Thus, $$ \tan^2(x) = \tan(3)\tan(33)\tan(39)\tan(69) $$ $$ \tan^2(x) = \tan(3)\tan(3-36)\tan(3-72)\tan(3+36) $$ $$ \tan^2(x)\tan(75) = \tan(3-72)\tan(3-36)\tan(3)\tan(3+36)\tan(3+72) $$
I will now show that ,
$$ \tan(5x)= \tan(x-72)\tan(x-36)\tan(x)\tan(x+36)\tan(x+72) $$
Let $z=\cos(x)+i\sin(x)$, and $ \omega = \cos(36)+i\sin(36) $ Then, $$ \tan(x) = -\frac{i(z^2-1)}{2(z^2+1)} $$ Similarly we can get $\tan(x-36),\tan(x-72),\tan(x+36),\tan(x+72) $ and then multiply . We very easily get the above identity. So, we have $$ \tan^2(x)=\tan^2(15) \implies x=15 $$