Yes. Write $E_h(\Delta)=\langle E(\Delta)h,h\rangle$. Then $$ \left\langle \left|\left(\int_{\mathbb C} (f_n(t)-f(t))\,dE(t)\right)h,h \right\rangle\right| =\left|\int_{\mathbb C}(f_n(t)-f(t))\,dE_h \right| \leq\int_{\mathbb C}|f_n(t)-f(t)|\,dE_h\leq\|f_n-f\|_\infty. $$ As you can do this for any $h$, $$ \left\|\int_{\mathbb C} (f_n(t)-f(t))\,dE(t)\right\|\leq\|f_n-f\|_\infty. $$