Let $X\sim Exp(1)$. So for $x\geq0$, $\mathbb{P}(X> x)=e^{-x}$. Let $X_i$ be iid to $X$ for $i=1,2,...$ and let $Y_n=n^\alpha \min\\{X_1,...,X_n\\}$ for some $\alpha<1$.
Then, $$\mathbb{P}(Y_n> x)=\mathbb{P}(\min\\{X_1,...,X_n\\}> xn^{-\alpha})=\mathbb{P}(X_1> xn^{-\alpha},...,X_n> xn^{-\alpha})$$
As the $X_i$ are identically distributed, and independent, this is:
$$\mathbb{P}(X_1> xn^{-\alpha})\mathbb{P}(X_2> xn^{-\alpha})\cdot...\cdot\mathbb{P}(X_n> xn^{-\alpha})=\mathbb{P}(X> xn^{-\alpha})^n=(e^{-xn^{-\alpha}})^n=e^{-xn^{1-\alpha}}$$
Then, for any $\varepsilon>0$,
$$\mathbb{P}(|Y_n-0|> \varepsilon)=\mathbb{P}(Y_n>\varepsilon)=e^{-\varepsilon n^{1-\alpha}}\to 0 \text{ as }n\to \infty$$ Where here we are using that $\alpha<1$, so that $n^{1-\alpha}\to \infty$.
Therefore, $Y_n\overset{p}{\to} 0$.