> One has $\sin(f\cdot x)=f\cdot\sin(x)$ for every $x$ if and only if $f=-1$ or $0$ or $1$.
The _if_ part is obvious. For the _only if_ part, consider the limit of the identity $\sin(f\cdot x)=f\cdot\sin(x)$ when $x\to0$. Then $\sin(x)=x-x^3/6+o(x^3)$ hence $$ f\cdot\sin(x)=f\cdot x-f\cdot x^3/6+o(x^3). $$ Furthermore $f\cdot x\to0$ hence $$ \sin(f\cdot x)=f\cdot x-f^3\cdot x^3/6+o(x^3). $$ The expansion along powers of $x$ is unique hence $f/6=f^3/6$, that is, $f^3-f=0$, that is, $f\cdot(f-1)\cdot(f+1)=0$. Finally, $f=-1$ or $0$ or $1$.