For a standard normal distribution with $E(X) = 0$.
$$\mu_2 = \frac{1}{\sqrt{2 \pi}}\int_{-\infty}^{\infty}x^2e^{-x^2/2} \, dx = 1,$$
and integrating by parts with $u = x^3$ and $dv = xe^{-x^2/2}dx$,
$$\mu_4 = \frac{1}{\sqrt{2 \pi}}\int_{-\infty}^{\infty}x^4e^{-x^2/2} \, dx = -\left.\frac{1}{\sqrt{2 \pi}}x^3e^{-x^2/2}\right|_{-\infty}^{\infty} +\frac{1}{\sqrt{2 \pi}}\int_{-\infty}^{\infty}3x^2e^{-x^2/2} \, dx\\\=\frac{3}{\sqrt{2 \pi}}\int_{-\infty}^{\infty}x^2e^{-x^2/2} \, dx=3\mu_2 = 3$$
For a general normal distribution rescale as $\hat{X} = \frac{X-E(X)}{\sqrt{\mu_2}}$ and you will find the same result.