Since $A$ is of rank 1, $A = uv^\top$ where $u,v\
eq 0$. This implies $A^2 = (v^\top u)A$ and hence $\lambda = v^\top u.$
Now, consider first the case $B=I$, $I+A$ is singular iff there is a $x\
eq 0$ with, $Ax = -x$. Clearly such an $x$ if it exists is of the form $\alpha u$. So $I+A$ is singular iff there exists a scalar $\alpha \
eq 0$ such that $\alpha Au = -\alpha u$, or $ \alpha ( (v^\top u) + 1) u = \alpha ( \lambda + 1) u = 0,$ this implies as $u \
eq 0$ $A$ is singular iff $ v^\top u = \lambda = -1.$
For the general case $B+A$ is singular iff $I + B^{-1}A$ is singular. Note $B^{-1}A = u_1v^\top$ where $u_1 = B^{-1}u$. Hence, $A+B$ is singular iff $ v^{\top} B^{-1} u = -1.$