Let $n=2k+1$ with $k\geq 1$, then $$n^4+4^n=n^4+4 \cdot 4^{2k}=n^4+4\cdot (2^k)^4=(n^2+2\cdot 2^{2k}+2^{k+1}n)(n^2+2\cdot 2^{2k}-2^{k+1}n).$$ Thus $n^4+4^n$ can be factored into non-trivial factors, when $n$ is odd.
Let $n=2k+1$ with $k\geq 1$, then $$n^4+4^n=n^4+4 \cdot 4^{2k}=n^4+4\cdot (2^k)^4=(n^2+2\cdot 2^{2k}+2^{k+1}n)(n^2+2\cdot 2^{2k}-2^{k+1}n).$$ Thus $n^4+4^n$ can be factored into non-trivial factors, when $n$ is odd.