I get:
a: $70\%$, b: $21\%$, c: $6.3\%$, using $\left(\dfrac{3}{10}\right)^m\dfrac{7}{10}$, where $m=0,1,2$ respectively.
d is:
$$\frac{7}{10}\sum_\limits{i=3}^\infty \left(\frac{3}{10}\right)^i$$ $$=\frac{7}{10} \left(\frac{3}{10}\right)^3\sum_\limits{i=0}^\infty \left(\frac{3}{10}\right)^i$$ $$=\frac{7}{10} \left(\frac{3}{10}\right)^3\frac{1}{1-\frac{3}{10}}$$ $$=\frac{7}{10} \left(\frac{3}{10}\right)^3\frac{10}{7}$$ $$=\left(\frac{3}{10}\right)^3$$ $$=2.7\%$$