Actually it's not that bad:
$$|DP_t\varphi(x)\cdot h|=|\lim_{\varepsilon \to 0}\frac{P_t\varphi(x+\varepsilon h)-P_t\varphi(x)}{\varepsilon}|\le Const$$
So
$$\lim_{\varepsilon \to 0}|P_t\varphi(x+\varepsilon h)-P_t\varphi(x)|=0$$
Actually it's not that bad:
$$|DP_t\varphi(x)\cdot h|=|\lim_{\varepsilon \to 0}\frac{P_t\varphi(x+\varepsilon h)-P_t\varphi(x)}{\varepsilon}|\le Const$$
So
$$\lim_{\varepsilon \to 0}|P_t\varphi(x+\varepsilon h)-P_t\varphi(x)|=0$$