We assume that $\Omega$ is real-valued and positive.
The poles are located at $s_n = \frac{2i}{a}(n\pi+\epsilon)$. If we analyze the integrand, we see that
$$\frac{e^{-i\Omega s}}{\sinh^2(\frac{a}{2}(s-\frac{2i\epsilon}{a}))}=\frac{e^{-i\Omega s_n}\left(1-i\Omega(s-s_n)+O\left(s-s_n\right)^2\right) }{(a^2/4)(s-s_n)^2+O\left(s-s_n\right)^6}$$
which reveals that the residues are
$$\frac{4}{a^2}\left(-i\Omega\right)e^{-i\Omega s_n}=\frac{4}{a^2}\left(-i\Omega\right)e^{-\Omega(2\epsilon/a)}\left(e^{-\Omega (2\pi/a)}\right)^n$$
Summing these we have
$$\frac{4}{a^2}\left(-i\Omega\right)e^{-\Omega(2\epsilon/a)}\frac{1}{e^{\Omega (2\pi/a)}-1}$$
The value of the integral is $-2\pi i$ (since we close in the lower-half plane) times the sum of these residues and is
> $$-\frac{8\pi \Omega}{a^2}e^{-\Omega(2\epsilon/a)}\frac{1}{e^{\Omega (2\pi/a)}-1} \to -\frac{8\pi \Omega}{a^2}\frac{1}{e^{\Omega (2\pi/a)}-1} $$
as $\epsilon \to 0$ as expected!!